

Keywords— Telematics Module, Embedded System, Framework,
Hardware Platform, Software Platform, Pairwise Testing Technique,
Controller Area Network, CAN.

Abstract— The use of embedded hardware and software are

growing in the automotive applications. However, the development
effort required is increasing at the same time that schedule is
becoming tight. In this paper we present a methodology for the
development of embedded systems suited to the dynamics of the
automotive sector. We propose a development framework that adds
the concepts of component-base software engineering, reusable
hardware platforms and pair-wise testing techniques. The
effectiveness was evaluated through a case study of developing a
telematic module. Development cycle of automotive embedded
system can be accelerated by using framework.

I. INTRODUCTION
N embedded system basically consists of a
microcontroller based system with dedicated functions,

usually with real-time processing constraints. Nowadays it is
increasingly present in automotive applications to provide
more comfort, safety and operational performance. The
electronic components represent about 35% of the production
cost of high end model [1].

The increasing use of embedded systems came from two
factors. Firstly, the standardization of vehicular data
communication architecture as controller area network (CAN).
Secondly, the availability of a large range of high performance
sensors, actuators and processors with reduced costs [2], [3].

The development of an embedded system for automotive
applications must meet the requirements of quality, reliability
and robustness. Also, they must comply with the time-to-
market and costs constraints imposed by market competition.
Therefore represents a major challenge for companies who
need to apply significant resources throughout the product
development cycle [4].

There are several initiatives for the standardization of the

Leopoldo R. Yoshioka and Claudio L. Marte are with the University of

Sao Paulo, Sao Paulo, SP, Brazil, (e-mail: leopoldo.yoshioka@usp.br).
Cledson A. Sakurai and Caio F. Fontana are with Federal University of

Sao Paulo, Santos, SP, Brazil, (e-mail: caio.fernando@unifesp.br).
Marcio C. Oliveira and Edgar T. Yano are with the Aeronautical Institute

of Technology, Sao Jose dos Campos, SP, Brazil, (e-mail:
mcamargooliveira@gmail.com).

automotive embedded system development process. For
example, a process reference model was created jointly by
several vehicle manufacturers through the Automotive Special
Interest Group (SIG) [5]. Their goal is bringing the best
practices defined in ISO/IEC 15502-2 standard for automotive
environment. Other example is Automotive Open System
Architecture (AUTOSAR), where the embedded software is
separated into two distinct categories: application and
infrastructure [6]. Here, the software components are tailored
from the beginning to be interconnected, by means of well-
defined ports, independently of the CPU, hardware or type of
application.

Given this scenario, the ability to carry out the development
of embedded systems efficiently becomes critical to business
success. Nevertheless, small size companies, mostly, do not
have the culture or not acquired a reasonable level of maturity
in terms of techniques for the development of its hardware or
software products. Beyond the issues of investment resources,
one of the causes for this fact is the difficulty in adjusting the
traditional development methodologies to the context of these
companies. Another issue is the fact that most of these
techniques are related to development of computational
platforms with less constraint in terms of processing capability,
memory space, and operating system [7].

This paper proposes a development framework for
automotive embedded systems based on a unified platform of
hardware and software combined with a systematic
development process. The framework goal is to increase the
quality and reliability of products [8].

II. FRAMEWORK FOR EMBEDDED SYSTEM DEVELOPMENT

A. Development Framework
A framework can be understood as architecture developed

in order to achieve maximum reuse. It is represented as a set of
abstract and concrete classes with great potential for
specialization [8], [9]. Although this definition is essentially
focused on the object-oriented software domain, their concepts
can be applied to the development of automotive embedded
systems, creating a scenario that embraces the four pillars
involved in developing such kind of system:; (1) hardware
platform; (2) software platform; (3) development process; and
(4) integration and test. Within the context of this work we will
adopt the following definition:

Framework for designing automotive embedded
systems based on reuse approach

Leopoldo R. Yoshioka, Marcio C. Oliveira, Claudio L. Marte, Caio F. Fontana, Cledson A. Sakurai,
and Edgar T. Yano

A

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 9

"A development framework for embedded automotive
systems is characterized as a well-defined development
process. It is coupled with the appropriated tools for
management, development and testing. It enables efficient
implementation of embedded systems. Thus, it preserves the
quality and reliability of the final products, ensuring time-to-
market."

In the following it is presented the background for hardware
and software development platform.

B. Hardware Platform Definition
In general, for the hardware design of a particular embedded

system, we consider that it has to attend specific application
requirements. However, if we choose the hardware
architecture considering only specific requirements, strongly
attached to a particular purpose, it will limit the life span to its
original purpose. It reduces the opportunity of its reuse in
another similar product. Thus, it is required a full development
cycles for each new product, as shown in the Fig. 1, without
substantial reuse of previous solutions and effort.

Now, one can consider the hardware as a platform for the

development of different applications. We will apply the
concept of reusability to develop a new embedded hardware.
In this proposal the full development cycle is performed only
in the first development cycle. In the following cycles, the
architecture and design of the hardware platform is reused in
different applications, with specific configuration or
arrangement variations to meet distinct requirements.
Therefore, a hardware platform is a family of architecture that

satisfies a set of architectural requirements for a particular
class of products, allowing the reuse of hardware and software.

Within this idea, the platform must have an architecture that
meets the needs of a wide range of class of product considered.
Thus, given a hardware platform, each new product will define
an instance, a sort of sub-platform that consists of a subset of
the technological possibilities available on the hardware
platform, and where all the requirements of the embedded
module are being fully complied. Fig. 2 illustrates the design
and development process of hardware within the context of the
proposed reusable platform framework.

At first glance someone can suppose an increased unit cost
of a basic product, which eventually will be using a hardware
platform more complex than it needs to have. However, this
cost will be compensated by development efficiency gain.

Following this strategy, the proposed framework considers
that the full development cycles will only occur at the first
time when the hardware platform is designed. For each new
embedded system, will exists a reduced cycle where the
requirements are analyzed, and it will be generated an instance
of the hardware platform in accordance with the needs of the
new product.

The platform must be designed in such a way that it covers
the key features and future needs envisioned by the company
from the point of view of technological resources for
embedded modules, such as processing speed, memory (RAM

REQUIREMENTS
GATHERING #1

REQUIREMENTS
ANALYSIS #1

DESIGN #1
IMPLEMENTATION

#1

TESTS #1

REQUIREMENTS
GATHERING #2

REQUIREMENTS
ANALYSIS #2

DESIGN #2
IMPLEMENTATION

#2

TESTS #2

REQUIREMENTS
GATHERING #3

REQUIREMENTS
ANALYSIS #3

DESIGN #3

IMPLEMENTATION
#3

TESTS #3

FULL DEVELOPMENT CYCLE
EMBEDDED SYSTEM #1

FULL DEVELOPMENT CYCLE
EMBEDDED SYSTEM #2

FULL DEVELOPMENT CYCLE
EMBEDDED SYSTEM #3

Fig. 1 traditional hardware development process – repetition of
traditional waterfall model for each new embedded system

development

REQUIREMENTS
GATHERING #1

REQUIREMENTS
ANALYSIS #1

DESIGN #1
IMPLEMENTATION

#1

TESTS #1

FULL DEVELOPMENT CYCLE
HARDWARE PLATFORM #1

(First Time)

PLATFORM “INSTANCE”
DESIGN &

IMPLEMENTATION #2
TESTS #2

PLATFORM “INSTANCE”
DESIGN &

IMPLEMENTATION #3
TESTS #3

REQUIREMENTS
GATHERING #2

REQUIREMENTS
ANALYSIS #2

REQUIREMENTS
GATHERING #3

REQUIREMENTS
ANALYSIS #3

REDUCED DEVELOPMENT CYCLE
EMBEDDED PRODUCT #2

“SUBSTANTIAL REUSE OF DESIGN, FUNCTIONS AND
TEST ARTIFACTS PREVIOUSLY DEVELOPED”

STRATEGY:

REDUCED DEVELOPMENT CYCLE
EMBEDDED PRODUCT #3

Fig. 2 proposed hardware development process – the development cycle
is reduced by introducing platform “instance” concept in the design and

implementation phase

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 10

and FLASH), interfaces, and power consumption.
The choice of a specific hardware component must take into

account factors such as availability of development tools,
expertise of technical team (minimizing any training needs or
renewal of the team), component life cycle and technical
support. Critical components such as microcontrollers and
memories must be chosen preferably within device families
that have a broad spectrum of features and capabilities, while
preserving the pin-to-pin compatibility so that they can be
eventually exchanged for each platform instance, in order to
satisfy cost requirements. For example, the adoption of a
processor with multi task features becomes a key factor for the
embedded systems based on complex algorithms [9].

C. Software Platform Definition
The software platform should follow the concept of

reusability and scalability. A very common scenario is the
practice to implement the embedded system software from the
scratch for each new project. This is due to the influence of its
own hardware, which constantly changes for each new product
development cycle [4].

The software architecture should be based on
componentization of modules along all software layers, using
the concepts of Component Based Software Engineering
(CBSE) [10]. The basic philosophy consists in the
implementation of the software systems from pre-existing
components instead of creating them from the scratch, i.e., the
focus is on reusability.

A software component is part of a system with non-trivial,
relatively independent and replaceable characteristics, with the
goal of satisfying a clear function within the context of a well-
defined architecture. Each component is fully encapsulated,
with its inner logic isolated from the other components of the
embedded software. All communication between components
is performed according to defined and standardized interfaces.

The integration of the components depends on two
important concepts: component model and component
framework [11].

The concept of component model comprises a set of
standards and well-defined conventions for a component,
defining basically what the component is and how it interacts
with other components. In order to components may interact
with each other, they must be adherent to the same Component
Model.

The component framework is a specific technical solution
that allows the components, adherent to a particular
component model, work together. A component framework
can be compared to a mini operating system, because it
manages resources used by components, and provides
mechanisms to communicate exactly how an operating system
do with the process [12].

Fig. 3 illustrates the concept of Component Framework,
where the software components behave as if they were
hardware components being embedded in a printed circuit
board [13].

The proposed framework considers that the software will be

organized into three distinct layers: infrastructure layer,
service layer; and application layer.

First, the infrastructure layer is responsible for interacting
with the hardware, creating an abstraction layer between the
hardware and the upper layers, decoupling them from direct
contact with the hardware platform in use. It is included in this
group all device drivers required for interaction with the
hardware platform, including devices such as CPU, memory,
IO, modems, GPS modules, network devices etc.

Second, the services layer aggregates the components
responsible for the provision of services to the application

layer. It is based on real-time operating system and device
drivers addressed in the infrastructure layer. These services
include general connectivity elements as serial port, network
access, timers and threads.

COMPONENT 1 COMPONENT N

RESOURCES MANAGEMENT

COMMUNICATION MECHANISMS BETWEEN COMPONENTS

COMPONENT FRAMEWORK

COMPONENT MODEL

Standard Interfaces

Fig. 3 component framework concept

APPLICATION LAYER
BUSINESS RULES

SERVICES LAYER
GENERAL SERVICES, CONNECTIVITY, DIAGNOSIS

OPERATIONAL SYSTEM

DEVICE DRIVERS & PERIPHERAL ACCESS

HARDWARE PLATFORM INSTANCE

INFRA-STRUCTURE LAYER

Fig. 4 proposed software architectural model

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 11

Third, the application layer is responsible for the business
rules, comprising all the algorithms and logic used in the
operation of the embedded system according to its application.
This layer will be the user of the services provided by the
services layer.

Fig. 4 shows the proposed three-layer architectural model.
On the lower level there is the hardware, which in this case is
the "instance" of the platform to be used. On the next level
there are the software components that build up the

infrastructure layer, immediately after the service layer, and at
the highest level, the software components that characterize
the application layer, including the algorithms and business
rules of the embedded module.

Fig. 5 illustrates the component-based development process
model. All phases receive input artifacts and generate output
artifacts. For each type of input / output there is a standard set
of documents and artifacts to be generated, based on the tools
available in the market. In the following we describe each
development process phases:

1) Requirement analysis - In this initial stage all the
features of the product should be discussed by the design
and development team. The requirements are listed,
detailed and classified according to their nature. At this
point, the information is a high level abstraction from the
embedded module point of view. However, it already
contains a certain level of technical detail regarding to the

aspects of the module´s operation and integration with the
vehicle. Some items include interfaces with other
modules, communication protocols, performance,
reliability, and security requirements. The final result of
this phase is Software Specification Document with
detailed technical requirements.
2) Architectural Design – This phase defines the software
assembly activities from the final software components,
either from the encoding of new components to be

developed, or any ready components that can be qualified,
adapted and reused. The output of this phase is the
Architectural Design Document, which consists of UML
diagrams containing static and dynamic representations of
embedded software.
3) Implementation or Reuse - depending on the design
and the final software components, the development cycle
can follow the path of engineering components or
component reuse. In some situations there may be a mixed
case. In the first case the components will be implemented
from scratch. In the second case there will be a reuse of
previously developed components after processes
including selection, qualification, and if necessary,
adaptation.
4) Component Selection – can be considered as a process
that formalizes the search for components, both in the
market or within the organization itself. It includes

REQUERIMENTS
ANALYSIS

ARCHITECTURAL
DESIGN

COMPONENT
ENGINEERING

COMPONENT
COMPOSITION

VALIDATION
TESTS

FINAL EMBEDDED
SOFTWARE

APPLICATION

COMPONENT
QUALIFICATION

COMPONENT
ADAPTATION

COMPONENT REUSE

NEW COMPONENT
IMPLEMENTATION

COMPONENT
INTEGRATION

COMPONENT
SELECTION

Fig. 5 life cycle of the component-based development process model

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 12

assessing a particular component, previously developed
and tested, to verify if it is suitable for use in the new
system [14]. The goal is to assemble a list of components
candidates for use in the design. Thus, it creates subsidies
for the next step of qualification. In some cases the
selection process cannot classify any component, ready-
made, as being proper for use. If this occurs, it means that
the component shall be implemented from scratch. We
propose in our framework the use of Weighted Scoring
Method (WSM) [15] that is widely used in ranking and
decision making, as a tool to systematize the component
selection process. This method classifies several options
available depending on pre-established criteria, which
defines a scale that represents the relative preference of
each attribute [16].
5) Component Qualification - it consists in evaluating the
applicability of a component to the final system where it
will be used. This activity is applicable when it is being
considered the use of some ready component (reuse) in a
given system. It evaluates aspects as functionality,
usability, and reliability. Moreover, items such as
adherence of the component to the component framework
in use are also evaluated.
6) Component Adaptation - it evaluates the coupling
between various components of the new software which
will be integrated. The goal of this activity is to ensure
that conflicts between components will be avoid or
minimized. Thus, ensuring that they work with the same
component framework. One can remove this way any
undesirable features of a particular component, making it
compatible with the framework and component model
adopted.
7) Component Engineering – it consists in the
implementation of new component, which is developed
for the first time to use in an embedded application. The
design and codification should focus on future reuse.
8) Component Composition - this activity consists in the
integrating of the various components to create the final
application. In this step the components are
interconnected through the component framework
providing services to each other via available interfaces.
There are three different types of composition:
hierarchical (a component directly calls the services of
another component; sequential (component services are
executed in sequence); or additive (two or more interfaces
components are composed to create a new component).
9) Validation Tests - this activity consists in the validation
test of the individual software components or final
software. It should be noted that the validation tests brings
forth a wide range of variations of test cases due to
various combinations of applicability of the module and
the environment in which it will operate.

III. CASE STUDY – DEVELOPMENT OF A TELEMATICS MODULE
In this article we present a case study, where we describe the

development process of telematic control unit (TCU)
compatible with the Brazilian National Transit Council
(CONTRAN) specifications [18].

The TCU is an electronic device capable of performing the

functions of vehicle tracking and blocking. The blocking
function, which prevents vehicle operation can be enabled /
disabled remotely or locally (by the own device under special
circumstances, or by the service operator). The tracking

function sends out data regarding the positioning coordinates
and security-related events to the Monitoring Service Provider
(TIV). Fig. 6 illustrates the TCU module functional block
diagram and the Fig. 7 shows the picture of TCU considered in
the present case study [18].

A. Functional description of the TCU:
In the following we describe the main functional elements of

the TCU module.
1) Validation Tests – this activity consists in the validation
test of the individual software components or final
software. It should be noted that the validation tests brings
forth a wide range of variations of test cases due to
various combinations of applicability of the module and
the environment in which it will operate.
2) Satellite signals reception module – it consists of GPS

Satellite Signals
Reception

Module

Bi-directional
Communication

Module

Backup Batery
Module

Vehicle locking and Management Module

Vehicle

Output
interfaces

Input
interfaces

Fig. 6 functional block diagram of the TCU module

Fig. 7 picture of Telematic Control Unit considered in the case study
(source: author)

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 13

antenna and a receiver.
3) Bi-directional communication module – it consists of
an antenna and a communication unit. Its function is to
send the localization data and events from the vehicle to
vehicle monitoring center (VMC). Also, it receives
commands from VMC.
4) Vehicle blocking and management module - it is
responsible for the integration of all other modules. It

receives information from GPS receiver, captures events
information from the vehicle´s interfaces, receives data
from the bi-directional communication module, and also
manages the equipment features.
5) Inputs Interfaces – they read the vehicle sensors states
including ignition, panic buttons, doors status, brakes, and
pedal.
5) Output interfaces – they allow the activation of external
devices like the vehicle blocking system or alarm.
6) Backup Battery Module – it ensures the equipment
power supply in case of main power failure (vehicle
battery). It is capable to operate for two hours, enabling
the TCU to keep the communication with the VMC. Thus
enabling alarm messages sending and the reception of
remote blocking commands.

B. Architectural Design and Component Representation of
the TCU

The Fig. 8 shows the representation in UML 2.0 component
set for TCU in architectural design phase. The components
are represented by rectangles and the interfaces between them
through connections with plug symbols. For this case study we
were not used of the shelf components. However, we can
identify several components that are potential candidates for a

future process of selection and reuse. One example is the
component responsible for interfacing with the vehicle. This
component can be reused in other embedded module, even if it
has a purpose other than TCU.

In the case of necessity to exchange communication
protocol the ACP245 component, shown in Fig. 8, can be
replaced by another component available on the market. This
increases the possibility of embedded device applications.
Similarly, the GPRS component (responsible for
communication via a mobile network) could be replaced by
satellite communication component. This allows the module to
operate in the areas where there is no mobile signal.

C. Operational Scenarios for Validating the TCU
In the following we present the variables involved in the

TCU operational scenario for validating the TCU. They are
described possible values that these variables can take,
properly classified in the applicability of the module,

Fig. 8 UML 2.0 representation of the TCU module

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 14

environmental changes, and configuration changes.
a) Application variability:

1) Vehicle models (where the TCU will be applied):
model A, model B, and model C.
2) Data communication service providers: Operator 1,
Operator 2, Operator 3, and Operator 4.
3) Monitoring service providers: VMC 1, VMC 2,
VMC 3, and VMC 4.

b) Environmental variability:
4) GPS signal status: (i) permanent sight of satellites; (ii)
intermittent sight of satellites; (iii) without sight.
5) GPRS data channel status: (i) constant signal;
(ii) intermittent signal; (iii) no signal.

c) Vehicle variability:
6) Vehicle speed: (i) V = 0 km / h; (ii) V > 0 km / h.
7) Vehicle ignition status: (i) On; (ii) Off.

d) Configuration variability:
8) VMC localization function: (i) On; (ii) Off.
9) Localization function (for local fleet management
system): (i) On; (ii) Off.
10) VMC tracking service status: (i) activated (service
was contracted); (ii) not activated (service did not
contracted).

The Table 1 summarizes the TCU parameters and respective
range of values for operational context considered.

TABLE I PARAMETERS AND VALUES INVOLVED IN THE
TEST OF TCU

Parameter Range of
values

1) Vehicle models 1 to 3
2) Mobile Service Operators 1 to 4
3) VMC Service Providers 1 to 4
4) GPS signal status 1 to 3
5) GPRS link status 1 to 3
6) Vehicle speed 1 to 2
7) Vehicle ignition status 1 to 2
8) VMC localization function 1 to 2
9) Localization function 1 to 2
10) VMC tracking sevice status 1 to 2

From the Table 2 we can calculate the total combination
possible for the test cases. Applying the rule of the product, we
can see that the number of test cases (NTC) is given by

13284. 2 x 2 x 2 x 2 x 2 x 3 x 3 x 4 x 4 x 3 ==NTC (1)

Therefore, in order to cover 100% of the test possible
combinations we have to perform 13,284 test cases.

It should be noted that the number of the possible
combinations of the parameters, considering their range of
values, results in a huge number of test cases. This could derail
the development due to the large effort need to cover all
possible test case combinations.

Faced with this situation, where there are a huge number of

variants to be tested, it is necessary to select a subset of
combinations. This enables the test execution in accordance
with the available resources [14].

The framework proposed in this paper used the pairwise
testing technique, which is a combinatorial method of software
testing [19]. For each pair of input parameters of a system,
tests are made for all possible discrete combinations of those
parameters. Using carefully chosen test vectors, this can be
done much faster than an exhaustive search of all combinations
of all parameters, by parallelizing the tests of parameter pairs.
This technique reduces significantly the number of test cases
that must be created and run.

There are two techniques for the application of pairwise
testing: orthogonal array and all-pairs algorithm. In this paper
we consider only the orthogonal array technique [20], [21].

D. Application of the Orthogonal Array Technique
An orthogonal array is a two-dimensional matrix (elements

consisting of 1 to n1, 1 to n2 1, ..., 1 to nm in each column). It
has the following properties:

1) Choosing any two columns of the matrix, in each pair
of columns will appear all combinations of pairs.
2) If there are n repetitions (n = 1 ... N) of a pair, in the
pair of columns, these pairs will appear repeated, in the
equal number, in all pairs of columns.

In the following it is presented an example that
demonstrates these properties. Let us consider the matrix M:

.

122
212
221
111





















=M (2)

It should be noticed that in each pair of columns appear the

following pairs: {1,1}, {1,2}, {2,1} and {2,2}.
We use the following notation to represent the orthogonal

matrix M:

).2(3
4LM = (3)

Where, the number "4" represents the number of rows of the
matrix, the number "2" is the maximum variation in the
possible values for each variable, and the number "3" is the
number of columns of the matrix, which symbolizes the
number of variables under test.

In practical cases, the matrix will not have in each column
(each variable) the same maximum number of range values. In
this case, the matrix is called "Mixed Orthogonal Matrix". Let
us consider the following notation:

).32(' 71
18LM = (4)

The expression (4) represents an orthogonal matrix which

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 15

there is one column (variable) with a maximum value 2, and 7
columns (variables) with maximum value 3.

In the following we present the steps defined by orthogonal
array techniques:

1) Identify the variables (functions). In the case of the
TCU, we have 10 variables.
2) Determine the maximum value of the range of values
for each variable. In the case of the TCU module, we have
two variables with maximum 4, 3 variables with maximum
value 3, and 5 variables with maximum 2.
3) Determine the orthogonal matrix which represents the
situation under examination. In the TCU module example,
we would have the following perfectly orthogonal matrix
(which covers exactly the number of variables involved
and the range of values of each variable):

).234(532

xLM = (5)

4) Because mathematically does not exist orthogonal
matrices for all cases, we need to use Taguchi’s
orthogonal matrix selection table [20], in order to locate
an Orthogonal Matrix closest to the case under analysis.
For this example, the Taguchi’s best suited matrix would
be the following:

).4(10

32LM = (6)

As shown in Table 2, note that the selected matrix has 32
rows and 10 columns, allowing variation of values of "1 to 4"
in 10 variables, which loosely covers the TCU module test
cases example.

Applying the values obtained in the matrix we selected 32
lines that correspond to 32 test cases, and in the columns 10
variations (VAR1, VAR2, VAR10), representing the 10
variables involved.

The technique results in a list of 32 test cases. It should be
notice that original test case was 13,284. It represents a
substantial reduction in labor, time and resources for system
validation.

IV. CONCLUSION
The proposed framework allows embedded systems

developers to move from their traditional process to an
approach based on software and hardware reuse. The
componentization of software associated to the concept of
hardware platform, enables the development of automotive
embedded devices with cost effective, quality assured, and the
timing needed to meet the market opportunities. The use of
dedicated test techniques such as pairwise testing enables
validation activities, keeping the formalism necessary to
ensure the product quality, while minimizing costs involved in
this critical step.

ACKNOWLEDGMENT
The authors would like to thank the company COMPSIS

Computadores e Sistemas Ind. Com. Ltda, for the opportunity
to conduct this research.

REFERENCES
[1] J. Yu, B. M. Wilamowski, “Recent Advances in In-vehicle embedded

systems”, in IECON 2011 – 37th Annual Conference on IEEE Industrial
Electronics Society, 2011, pp. 4623-4625.

[2] K.H. Johansson, M. Törngren, M., L.Nielsen, Vehicle applications of
controller area network. Handbook of Networked and Embedded
Control System,. 2005, pp. 741–766,.

[3] Y.J. Choi’s et al, “A study of HMI on in-vehicle Telematic System”, in
Proc. 5th WESEAs International Conference on Applied Informatics
and Communications, 2005, pp.281–283.

[4] A.C. Guerra, J.N. Moreno, “Best practices for software development in
small businesses”, in Proc. IADIS Conferences Ibero-American, 2008.

[5] Automotive SPICE Process Reference Model. SPICE User Group, 2007,
pp.1-47.

[6] AUTomotive Open System Architecture – AUTOSAR. Available:
http://www.autosar.org/.

[7] J.C.B. Mattos, L.S. Rosa, M.L. M. L.. Pilla, Challenges to Design
Embedded Systems, Ed. da Universidade Federal de Pelotas, 2009.

[8] T. Novosel, L. Jelenkovic, “Framework for embedded systems
development”, in Proc. 34 th International Convention, MIPRO 2011,
2011, pp. 825-828.

[9] P. Dostálek, J. Dolinay and V. Vašek, “Embedded System for audio
source localization based on beamforming”, in International Journal of
Circuits, Systems and Signal Processing, Issue 6, vol. 6, 2012, pp. 367-
375.

[10] M. Mattsson, Evolution and Compostion of Object Oriented
Frameworks, University of Karlskrona/Ronneby, Department of
Software Engineering and Computer Sciente, Karlskrona, Sweden,
2000.

[11] C. Szyperski, Component Software Beyond Object-Oriented
Programming, Addison-Wesley Componet Software, 2002.

TABLE II ORTHOGONAL ARRAY APPLIED TO THE TCU CASE

STUDY

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 16

http://www.autosar.org/�

[12] F. Bachman et al, Volume II: Technical Concepts of Component-Based
Software Engineering. Technical report, Carnegie Mellon Software
Engineering Institute (SEI), 2000.

[13] I. Crnkovic, M. Larsson, Building Reliable Component-Based Software
Systems. Artech House Publishers, 2002.

[14] M. S. Phadke, Quality Engineering Using Robust Design.: Prentice-
Hall, New York, NY, 2008.

[15] J. Kontio, “A Case study in applying a Systematic Method for COTS
Selection”, in Proc. 18th Intermational Conference on Software
Engineering (ICSE-18), 1996.

[16] A. Jadhav, “Analytic Hierarchy Process (AHP), Weighted Scoring
Method (WSM), and Hybrid Knowledge Based System (HKBS) for
Software Selection: A Comparative Study”, in Proc. 2nd Conference on
Emerging Trends in Engineering and Technology (ICETET), 2009,
pp. 991-997.

[17] BRASIL, CONTRAN, Resolution No. 245, July 2007 – Deployment of
National Automatic Vehicle Monitoring System (SIMRAV), 2007.

[18] L.R. Yoshioka, M.C. Oliveira, M., Micoski, R. D. Costa,
“Considerations on the Design and Implementation of ACP245 Protocol
in the Telematic Control Unit”, in SAE Technical Paper, 2010.

[19] K.C. Tai, Y. Lei, “A test generation strategy for pairwise testing”. In
IEEE Transaction on Software Engineering, vol. 28, 2002, pp.109-
111.

[20] Taguchi Orthogonal Array Selector, Available:
http://www.freequality.org/documents/tools/Tagarray_files/tamatrix.htm

[21] L. Lazica, N. Mastorakis, “Orthogonal Array application for optimal
combination of software defect detection techniques choices” in
WSEAS TRANSACTIONS on COMPUTERS, Issue 8, Volume 7,
August 2008, pages 1319-1336.

Leopoldo Rideki Yoshioka born in São Paulo, Brazil in 1961. He received
electronic engineer degree from Aeronautical Institute of Technology (ITA),
Brazil, on 1984. Master and PhD degree from Tokyo Institute of Technology
(Tokyo Tech), Japan, on 1988 and 1991.

He is currently a Professor of the Department of Electronic Systems
Engineering at the University of São Paulo (USP), Brazil. His current
research interests include embedded systems applied to the Intelligent
Transportation Systems (ITS) and Autonomous Vehicles. He is a member of
ITS Committee at the National Association of Public Transport (ANTP).

Marcio Camargo Oliveira born in São José dos Campos, Brazil, in
1975. He received the bachelor of Computer Science degree from Paraiba
Valley University on 2002, with best student award.

He is currently, Master course student in Electronic and Computer
Engineering on Aeronautical Institute of Technology (ITA), Brazil, and works
as a Senior Systems Developer at Compsis Computadores e Sistemas Ltda,
Brazil. His current research interests include embedded systems engineering,
automotive technology and software engineering.

Claudio Luiz Marte born in São Paulo, Brazil, in 1963. In 1985 he
completed his Degree at the Federal University of São Carlos [UFSC] and in
1988 completed Electrical Engineering (Electronic) at
the Polytechnic School of the University of Sao Paulo [USP]. In 1994 he
presented his Master of Science (MSc) and in 2000 he defended his Doctorate
in Engineering (DE) thesis in Electrical Engineering (Digital Systems) at
EPUSP.

He is currently a Professor of the Department of Transport Engineering
(PTR) of EPUSP. His current research interests are: Moving Objects applied
in ITS - Intelligent Transport Systems, Electronic Fee Collection (EFC),
Advanced Public Transportation Services (APTS) and Advanced Traffic
Management Services (ATMS). He is a member of ITS Brazil and ITS
Committee of the National Association of Public Transport (ANTP).

Cledson Akio Sakurai born in São Paulo, Brazil, in 1972. He received the
engineer degree from Faculdade de Engenharia Industrial on 1995, Master
and PhD degree from Escola Politécnica of Universidade de SãoPaulo on
2004 and 2010.

He is currently, professor on Universidade Federal de São Paulo in
Electrical Engineering. His current research interests include smart city, smart
grid and telecommunications. He is a member of ASSESSPRO-SP (Software

Association of São Paulo) and member on technical council of technological
park in Santos.

Caio Fernando Fontana born in Botucatu, Brazil. He received the business
administration degree from Faculdade de Administração de Empresas de
Araçatuba on 1988, Master and PhD degree from Escola Politécnica of
Universidade de SãoPaulo on 2004 and 2009.

He is currently, on Universidade Federal de São Paulo in Business
Administration and Logistic. His current research interests include smart city,
logistic and transport. He is a revisor of FAPESP (Funding Agency of São
Paulo).

Edgar Toshiro Yano born in São Paulo, Brazil, in 1959. He received the
engineer degree from ITA (Instituto Tecnológico de Aeronáutica) in 1981,
Master degree from INPE (Instituto de Pesquisas Espaciais) in 1987 and PhD
degree from ITA in 1998.

He is currently Associated Professor at ITA -Computer Science Division.
His current research interests include Cybersecurity, Software Safety and C2
(Command and Control) Systems.

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014

ISSN: 2074-1308 17

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5394476�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5394476�
http://www.freequality.org/documents/tools/Tagarray_files/tamatrix.htm�

